INFLUENCE OF PROPERTIES OF SUPERHEAVY NUCLEI ON THEIR ALPHA-DECAYS

N.V. Antonenko, Joint Institute for Nuclear Research, Dubna, Russia

The calculations performed with the modified two-center shell model reveal good agreement between the calculated and experimental values of Q_{α} . Based on the calculated one-quasiproton spectra and energies for α -decays, one can explain why the α -decay chain of ²⁹¹117 or ²⁸⁷115 is terminated by spontaneous fission of ²⁶⁷Db. In the α -decay chain of ²⁹³117 the α -decay of ²⁸¹Rg is hindered by the structure effects. The value of T_{α} becomes longer than T_{sf} and ²⁸¹Rg likely undergoes spontaneous fission. In addition the number of isomeric states in heaviest odd-*Z* nuclei were predicted. The α -decays from some of these states seem to be possible.

The spectra and decay of the states of nuclei from the α -decay chain of ²⁸⁸115 were investigated within the independent quasiparticle model. The modified two-center and self-consistent Skyrme single-particle potentials were used. The pairing was treated at the BCS level. The α -transition spectra were obtained and compared with the experimental data.

The special attention was paid to possible E1 transitions in ²⁷⁶Mt observed in the α -decay chain of ²⁸⁸115. Following our analysis, they might be related to the transitions $n9/2[604] \rightarrow n11/2[725]$ and $n11/2[725] \rightarrow n9/2[615]$ in the two-center shell model and to transitions $p9/2[505] \rightarrow p11/2[615]$ in the Skyrme-HF approach. Note that E1 transition $n11/2[725] \rightarrow n9/2[615]$ in the two-center shell model brings ²⁷⁶Mt to the ground state, as assumed in the experimental analysis. Besides the E1 transitions, the strong M1 and M2 transitions are expected in ²⁷⁶Mt in the Skyrme-HF and two-center shell model treatments, respectively. Altogether we see that the models listed above support the existence of E1 transitions in ²⁷⁶Mt but propose for them quite different scenarios. We certainly need here a further theoretical and experimental effort. As for the theory, more involved calculations including the Coriolis interaction, Gallagher-Moszkowski correction and the Newby shift for odd-odd nuclei, and vibrations of the even-even core (with the proper treatment of the Pauli principle) are desirable.