RESULTS OF THE HEAVIEST SINGLE AND MULTIPLE BETA-DELAYED NEUTRON EMITTERS MEASURED SO FAR

R. Caballero-Folch, TRIUMF, Vancouver BC, Canada

Caballero-Folch R.^{1,2}, Dillmann I.^{2,3}, Agramunt J.⁴, Tain J.L.⁴, Algora A.⁴, Äysto J.⁵, Calvino F.², Canete L.⁶, Cortès G.², Eronen T.⁶, Ganioglu E.⁷, Gelletly B.⁸, Gorelov D.⁶, Guadilla V.⁴, Hakala J.⁶, Jokinen A.⁶, Kankainen A.⁶, Kolhinen V.⁶, Koponen J.⁶, Marta M.³, Mendoza E.⁹, Montaner-Pizá A.⁴, Moore I.⁶, Nobs Ch.¹⁰, Orrigo S.⁴, Penttilä H.⁶, Pohjalainen I.⁶, Reinikainen J.⁶, Riego A.², Rinta-Antila S.⁶, Rubio B.⁴, Salvador-Castiñeira P.², Simutkin V.⁶, Voss A.⁶,

1 TRIUMF, Vancouver, Canada 2 UPC, Barcelona, Spain 3 GSI, Darmstadt, Germany 4 IFIC, CSIC UV, València, Spain 5 University of Helsinki, Helsinki, Finland 6 University of Jyvaskyla, Jyvaskyla, Finland 7 Department of Physics, University of Istanbul, Vezneciler, Turkey 8 University of Surrey, Guilford, UK 9 CIEMAT, Madrid, Spain 10 University of Brighton, Brighton, UK

The β -delayed neutron emission probability, Pn, of very neutron-rich nuclei allow us to achieve a better understanding of the nuclear structure above the neutron separation energy, Sn, and astrophysical phenomena such as the rapid neutron capture process (r-process). More than 600 of the presently known isotopes are energetically allowed β -delayed neutron emitters, but the branching ratio has only been determined for around 30% of them. β -delayed one-neutron emitters (β 1n) have been experimentally measured up to A~150, plus a single measurement of ²¹⁰Tl. Concerning two-neutron emitters (β 2n), they are only known up to masses around A~100. Recent experiments performed at GSI Darmstadt (Germany) and the IGISOL facility in Jyväskylä (Finland) allowed to measure heavier isotopes and determine their Pn values with a 4pi neutron detector based on ³He counters and named BELEN [2]. At GSI it was possible to measure β 1n emitters for several Hg and Tl isotopes with masses beyond A>200 and N>126, and at IGISOL the heaviest β 2n emitter ¹³⁶Sb was identified. This contribution will report these recent results of P1n and P2n values together with the new plans for β -delayed neutron emitter measurements at RIKEN (Japan). The BRIKEN project aims to perform measurements of more than a hundred of β 1n, and many β 2n and β 3n emitters, a lot of them for the first time. These isotopes will be the most neutron-rich species measured so far.

REFERENCES

- R.Caballero-Folch, C.Domingo-Pardo et al. First measurement of several β-delayed neutron emitting isotopes beyond N=126. In revision, submitted to Phys. Rev Lett. (arXiv:1511.01296).
- [2] J.Agramunt et al. 2016 Nucl. Instr. Meth. A 807 69–78.