INVESTIGATING PROLATE-OBLATE SHAPE INVERSION IN PT NUCLEI NEAR A ~ 188

S.K. Chamoli, University of Delhi, Delhi, India

S.K. Chamoli¹, Aman Rohilla¹, C.K. Gupta¹, S. Chakarborty², S.K. Tiwari², R.P. Singh³, S. Muralithar³, H.P. Sharma², A. Kumar⁴, D.C. Biswas⁵ and I.M. Govil⁴

1 Department of Physics & Astrophysics, University of Delhi, New Delhi-110007, INDIA

2 Banaras Hindu University, Varanasi - 221005, INDIA

3 Inter University Accelerator Center, New Delhi - 110067, INDIA

4 Department of Physics, Panjab University Chandigarh- 160014, INDIA

5 Nuclear Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai - 400085, INDIA

The nuclei in mass region A \sim 190 are well known for the prolate-oblate shape co-existence/ transition phenomena. The shape coexistence phenomena has been observed in nuclei like Hg & Tl of this mass region [1]. The calculations done for Pt nuclei in [2] indicate a smooth shape change from prolate deformed ¹⁸⁶Pt to nearly spherical ²⁰²⁻²⁰⁴Pt through the region of triaxially deformed ¹⁸⁸⁻¹⁹⁸Pt and slightly oblate ²⁰⁰Pt. In these calculations, a change of shape from prolate to oblate is expected at A = 188. In recent high spin spectroscopic investigations, significant amount of reduced prolate collectivity has been observed in ¹⁸⁸Pt [3]. The level lifetimes provide valuable information about the nuclear shape and also the shape change with increase in spin along a band. So, to get clear signature of prolate to oblate shape inversion in Pt nuclei near A = 190, it is required to perform lifetime measurements. With this objective, an RDM lifetime measurements of the high spin states in ¹⁸⁸Pt has been performed at Inter University Accelerator Center (IUAC), Delhi using the ¹⁷⁴Yb (¹⁸O, 4n) ¹⁸⁸Pt reaction, at a beam energy of 84 MeV. For these measurements a thin target [4] of 700 µg/cm² of enriched ¹⁷⁴Yb material evaporated on a 3.5 mg/cm² thick backing of natural Ta is used. A highly pure natural gold foil of thickness ~ 8 mg/cm² is used as stopper. The data is taken for different target –stopper distances ranging from $8 - 10,000 \mu m$ in 22 unequal steps. The results obtained are very encouraging and do indicate a somewhat low deformation for the vrast sequence in ¹⁸⁸Pt nucleus. However a sharp reduction in the collectivity with increasing spin in ¹⁸⁸Pt, contrary to the other light neighboring Pt nuclei, indicates the volatile nature of deformation in Pt nuclei near A ~ 190 at high spins which needs further theoretical investigations. The detailed analysis of results and other interesting conclusions drawn will be discussed during the presentation.

REFERENCES

[1] Kris Heyde and John L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

[3] S.Mukhopadhyay, et al., Phys. Lett. B, Volume 739, 12 December 2014, pages 462-467.

[4] Aman Rohilla, C.K. Gupta et al., Nucl. Instrum. Methods Phys. Res. A 797 (2015) 230-233.