# INVESTIGATING PROLATE-OBLATE SHAPE INVERSION IN PT NUCLEI 

NEAR A ~ 188
S.K. Chamoli, University of Delhi, Delhi, India

S.K. Chamoli ${ }^{1}$, Aman Rohilla ${ }^{1}$, C.K. Gupta ${ }^{1}$, S. Chakarborty ${ }^{2}$, S.K. Tiwari², R.P. Singh ${ }^{3}$, S. Muralithar ${ }^{3}$, H.P. Sharma ${ }^{2}$, A. Kumar ${ }^{4}$, D.C. Biswas ${ }^{5}$ and I.M. Govil ${ }^{4}$

1 Department of Physics \& Astrophysics, University of Delhi, New Delhi-110007, INDIA

2 Banaras Hindu University, Varanasi - 221005, INDIA

3 Inter University Accelerator Center, New Delhi - 110067, INDIA

4 Department of Physics, Panjab University Chandigarh- 160014, INDIA
5 Nuclear Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai - 400085, INDIA

The nuclei in mass region $\mathrm{A} \sim 190$ are well known for the prolate-oblate shape co-existence/ transition phenomena. The shape coexistence phenomena has been observed in nuclei like $\mathrm{Hg} \& \mathrm{Tl}$ of this mass region [1]. The calculations done for Pt nuclei in [2] indicate a smooth shape change from prolate deformed ${ }^{186} \mathrm{Pt}$ to nearly spherical ${ }^{202-204} \mathrm{Pt}$ through the region of triaxially deformed ${ }^{188-198} \mathrm{Pt}$ and slightly oblate ${ }^{200} \mathrm{Pt}$. In these calculations, a change of shape from prolate to oblate is expected at $\mathrm{A}=188$. In recent high spin spectroscopic investigations, significant amount of reduced prolate collectivity has been observed in ${ }^{188} \mathrm{Pt}$ [3]. The level lifetimes provide valuable information about the nuclear shape and also the shape change with increase in spin along a band. So, to get clear signature of prolate to oblate shape inversion in Pt nuclei near A $=190$, it is required to perform lifetime measurements. With this objective, an RDM lifetime measurements of the high spin states in ${ }^{188} \mathrm{Pt}$ has been performed at Inter University Accelerator Center (IUAC), Delhi using the ${ }^{174} \mathrm{Yb}\left({ }^{18} \mathrm{O}, 4 \mathrm{n}\right){ }^{188} \mathrm{Pt}$ reaction, at a beam energy of 84 MeV . For these measurements a thin target [4] of $700 \mu \mathrm{~g} / \mathrm{cm}^{2}$ of enriched ${ }^{174} \mathrm{Yb}$ material evaporated on a $3.5 \mathrm{mg} / \mathrm{cm}^{2}$ thick backing of natural Ta is used. A highly pure natural gold foil of thickness $\sim 8$ $\mathrm{mg} / \mathrm{cm}^{2}$ is used as stopper. The data is taken for different target -stopper distances ranging from $8-10,000 \mu \mathrm{~m}$ in 22 unequal steps. The results obtained are very encouraging and do indicate a somewhat low deformation for the yrast sequence in ${ }^{188} \mathrm{Pt}$ nucleus. However a sharp reduction in the collectivity with increasing spin in ${ }^{188} \mathrm{Pt}$, contrary to the other light neighboring Pt nuclei, indicates the volatile nature of deformation in Pt nuclei near A ~ 190 at high spins which needs further theoretical investigations. The detailed analysis of results and other interesting conclusions drawn will be discussed during the presentation.

## REFERENCES

[1] Kris Heyde and John L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
[3] S.Mukhopadhyay, et al., Phys. Lett. B, Volume 739, 12 December 2014, pages 462-467.
[4] Aman Rohilla, C.K. Gupta et al., Nucl. Instrum. Methods Phys. Res. A 797 (2015) 230-233.

