Nuclei around doubly closed shells play a crucial role in determining both the nucleonic single-particle energy levels and the two-body matrix elements of the effective nuclear interactions. Of particular importance is the comparison of experimental data with calculations either based on a shell-model approach or taking into account couplings between basic core excitations (such as vibrations) and single particles [1].

In this work we present a detailed γ-spectroscopy study of Ca isotopes, produced by a neutron capture reaction on a 48Ca target. The experiment was performed at the PF1B cold-neutron facility at ILL (Grenoble, France), delivering, after collimation, a halo-free pencil beam with a capture flux on target of 10^8 s$^{-1}$ cm$^{-2}$. The experimental set-up consisted of 46 HPGe crystals: 8 EXOGAM clover detectors, 6 GASP detectors, as well as two clovers from the ILL LOHENGRIN Instrument, ensuring a total photopeak efficiency of 6% [2]. The cold neutron capture reaction populated excited states of 49Ca within a few units of spin, from the ground state up to the neutron binding energy in this nucleus. The same type of information is also obtained for 41Ca and 45Ca, owing to target contaminants of 40Ca and 44Ca. A key aspect of the analysis is the accurate measurement of angular correlations, which allow to establish spins and parities of several excited states. The experimental information on 41Ca and 49Ca, in particular, will be compared to preliminary calculations with a newly developed “hybrid” model [3], aiming at describing the entire excitation spectrum of one-valence-particle nuclei, including complex excitations arising from the coupling of the valence nucleon with excitations of the doubly-magic core.

REFERENCES