STRUCTURE OF ${ }^{13}$ C EXCITED STATES WITH LOW ENERGY ELASTIC AND INELASTIC SCATTERING OF ALPHA PARTICLES ON ${ }^{9}$ BE

I. Lombardo, Univ. Napoli Federico II \& INFN-Napoli, Napoli, Italy

D. DellAquila ${ }^{1}$ and M. Vigilante ${ }^{1}$

1 Università degli Studi di Napoli Federico II \& INFN-Sezione di Napoli, Napoli, Italy

The study of ${ }^{13} \mathrm{C}$ structure can be important to understand the effects of clustering in light non-self-conjugated nuclei. The possible presence of rotational bands built on molecular states has been suggested in several papers [1,2]. Furthermore, in recent times, some theoretical papers [3,4] predicted the possible existence of states corresponding to the coupling of a valence neutrons to the ${ }^{12} \mathrm{C}$ Hoyle state.
To understand these aspects, we performed a comprehensive R-matrix fit of elastic (α_{0}) and inelastic (α_{1} and α_{2} channels) scattering data collected by studying $\alpha+{ }^{9}$ Be collisions in the energy range $\mathrm{E}_{\alpha}=3.5-10 \mathrm{MeV}$ at several angles in direct kinematics [5]. This kind of analysis allows to refine the spectroscopy of excited states in ${ }^{13} \mathrm{C}$ in the excitation energy region between 13 and 17 MeV , where several ambiguities are persisting in the literature and members of molecular bands have been predicted [1,2]. In particular we found that the 13.41 MeV state could be assigned $7 / 2^{+}$, in agreement suggestions reported in Ref. [6] and possibly associated with the positive parity rotational band suggested in [1]. Further, a non-vanishing direct contribution is needed to reproduce the inelastic scattering cross section of the α_{2} channel, that involves the second member of the ground state rotational band of ${ }^{9} \mathrm{Be}$. The obtained results of this preliminary analysis will be discussed in the talk.

REFERENCES

[1] M. Milin and W. von Oertzen, Eur. Phys. J. A 14 (2202) 295
[2] N. Furutachi and M. Kimura, Phys. Rev. C 83 (2011) 021303(R)
[3] T. Yamada and Y. Funaki, Phys. Rev. C 92 (2015) 034326
[4] Y. Chiba and M. Kimura, J. Phys.: Conf. Ser. 569 (2014) 012047
[5] I. Lombardo et al., Nucl. Instr. Meth. Phys. Res. B 302 (2013) 19
[6] M. Freer et al., Phys. Rev. C 84 (2011) 034317

