β DECAY AS NOVEL APPROACH TO LOW-ENERGY E1 EXCITATIONS

Marcus Scheck, University of the West of Scotland, Paisley, UK

M. Scheck^{1,2}, S.Mishev^{3,4}, V.Yu Ponomarev⁵, R. Chapman^{1,2}, L.P.Gaffney^{1,2}, E.T. Gregor^{1,2}, N.Pietralla⁵, P. Spagnoletti^{1,2}, D. Savran⁶, and G.S. Simpson^{1,2}

1 University of the West of Scotland, Paisley, UK 2 SUPA Scottish Universities Physics Alliance, Glasgow, UK 3 JINR Joint Institute for Nuclear Research, Dubna, Russia 4 New Bulgarian University, Sofia, Bulgaria 5 IKP TU Darmstadt, Darmstadt, Germany 6 ExtreMe Matter Institute and Research Division, GSI, Darmstadt, Germany

Inspired by Total Absorption Gamma-ray Spectroscopy [1] following β decay, which exhibits an enhanced population of high-lying levels, a survey of available β -decay data was performed. The aim was to test, whether β decay can populate 1⁻ levels [2] associated with the Pygmy Dipole Resonance (PDR) [3]. The focus was set on high Q-value β -decays from mothers with low ground-state spin. Indeed for several nuclei a significant population of these 1⁻ levels was observed. The, in comparison to in-beam experiments, background free spectra obtained from β decay will allow for the extraction of complementary experimental data such as branching ratios to lower-lying excited states. Yet, for daughter nuclei where data about the 1⁻ levels exists from other probes, it is obvious that only a fraction of those 1⁻ levels is populated and the population pattern is significantly different. First exploratory calculations within the microscopic Quasiparticle Phonon Model [4] revealed that β decay populates only specific one-particle one-hole (1p1h) configurations but mostly two-particle two-hole configurations. This is in striking contrast to inelastic scattering experiments as, for example, (γ , γ) or (α , α ' γ), which dominantly excite 1p1h configurations. Consequently, the well-established technique of γ -ray spectroscopy following β decay represents a novel approach to low-energy E1 excitations in nuclei. β decay is perfectly suited for neutron-rich radioactive nuclei, in which the PDR is supposed to be more pronounced.

REFERENCES

- [1] A. Fijalkowska et al., Acta. Phys. Pol. B 45, 545 (2014)
- [2] M. Scheck et al., Phys. Rev. Lett. 116, 132501 (2016)
- [3] D. Savran, T. Aumann, and A. Zilges, Prog. Part. Nucl. Phys
- [4] V.G. Soloviev, Theory of Atomic Nuclei, Quasiparticles and Phonons (IOP, London, 1992)