NUCLEAR STRUCTURE OF ^{6,8}He

VIA REACTION CROSS SECTION MEASUREMENTS

Yutaro Tanaka, Osaka University, Osaka, Japan

Y. Tanaka¹, M. Fukuda¹, D. Nishimura², M. Takechi³, M. Tanaka¹, H. Du¹, K. Ohnishi¹, K. Aoki², A. Ikeda³, T. Izumikawa⁴, H. Oikawa², T. Ohtsubo³, I. Kato⁵, Y. Kanke², A. Kitagawa⁶, S. Sato⁶, T. Sugihara¹, T. Suzuki⁵, K. Takahashi³, Y. Takei², A. Takenouchi², N. Tadano⁵, K. Chikaato³, T. Nagai², K. Nishizuka³, S. Fukuda⁶, A. Honma³, M. Machida², M. Mihara¹, E. Miyata³, S. Yagi¹, S. Yamaoka¹, T. Yamaguchi⁵, K. Yokoyama³

Department of Physics, Osaka University, Osaka, Japan
Department of Physics, Tokyo University of Science, Tokyo, Japan
Department of Physics, Niigata University, Niigata, Japan
4 RI Center of Niigata University, Niigata, Japan
5 Department of Physics, Saitama University, Saitama, Japan
6 National Institute of Radiological Science, Chiba, Japan

The reaction cross section reflects the basic physical quantity nuclear size or density distribution that represents the structure of nuclei. We have developed a method to measure reaction cross sections of unstable nuclei systematically and to deduce density distributions from measured reaction cross sections.

^{6,8}He are neutron rich helium isotopes. They have solid cores of ⁴He, so it is suggested that valence two neutrons of ⁶He and four neutrons of ⁸He compose developed neutron halo or neutron skin[1-4].

⁶He is likely to have a two neutron halo structure because it is the Boromian nucleus with a solid core. Therefore, to investigate the density distribution near the surface of ⁶He in detail are useful to elucidate the two neutron halo structure. Further, by obtaining detailed information of the two valence neutrons in ⁶He, it is also expected to disclose more about the di-neutron correlation.

As the A/Z = 4 for ⁸He, ⁸He is the most neutron-rich nucleus in all nuclei. Therefore, it is intriguing to investigate this exotic nucleus. Results of interaction cross section measurements and proton elastic scattering claim that ⁸He has a neutron skin structure. On the other hand, results of reaction cross section measurements has been pointed out a possibility for tail in the density distribution[5]. In this way, the definitive conclusion for the structure of ⁸He is not out.

In addition, by examining the nuclear structure of ⁶He and ⁸He systematically, it is also expected to get aknowledge of the difference between the halo structure and skin structure.

In order to investigate the nuclear structure of ^{6,8}He, we accurately measured reaction cross sections for ^{6,8}He on nuclear targets and proton target in the intermediate energy region. The experiment was carried out at HIMAC[6]. By Glauber type calculation, we deduced the nucleon density distribution from the present reaction cross section data for nuclear target. The proton/neutron density distributions were also deduced by including the proton target data. In this presentation, we will discuss the obtained ^{6,8}He density distribution in the context of their nuclear structure.

REFERENCES

[1] I. Tanihata et. al., Phys. Lett. B289, 261-266 (1992).

[2] A. A. Korsheninnilov et al., Nucl. Phys. A617 (1997) 45.

[3] S. V. Stepantsov et al., Phys. Lett. B542 (2002) 35.

[4]G. D. Alkhazov et. al., Nucl. Phys. A712, 269-299 (2002).

[5]M. Takechi et. al., AIP Conf. Proc. 891, 187-191 (2007).

[6]HIMAC: Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences, Chiba 263-8555, Japan.